Categories
Insights Industry News
April 19, 2017
Data science software maker Dataiku explores the types of data problems facing retail and the steps to take to become more data driven.
In the retail business, big data is poised in the coming years to open up huge opportunities in the way stores (both physical and online) fundamentally operate and serve customers. Given the incredibly small margins, Big Data will also provide much-needed efficiency improvements – from tighter supply chain management to more targeted marketing campaigns – that can make a big difference to a retail business of any size.
Making data-driven decisions is no longer about learning from the past; it means making changes to the business constantly based on real time input from all data sources across the organization. Making predictions and applying machine learning is based on traditional data but also on new and innovative sources like connected Internet of Things (IoT) devices and sensors or, going a step further with deep learning, unstructured data from things like static images or cameras monitoring stock in warehouses. Consumers can be fickle, so being able to accurately anticipate what they will do next and quickly react is what puts the most innovative and successful retailers above the rest.
Data science software maker, Dataiku, recently explored the types of data problems facing retail, the problems they solve, and the steps that any retail organization can take to become more data driven.
Many retailers still struggle with siloed data – transaction data lives apart from web logs which in turn is separate from CRM data, etc.
SOLUTION: Complete, Real Time Customer Looks
Cutting-edge retailers look at customers as a whole, combining traditional data sources with the non-traditional (like social media or other external data sources that can provide valuable insight).
RESULTS:
Supply chains are already driven by numbers and analytics, but retailers have been slow to embrace the power of realtime analytics and harnessing huge, unstructured data sets.
SOLUTION: Automation and Prediction for Faster, More Accurate Management
Combine structured and unstructured data in real time for things like more accurate forecasts or automatic reordering.
RESULTS:
Looking back at shoppers’ past activity often isn’t a good indication of what they will do next.
SOLUTION: Prediction and Machine Learning in Real Time
Instead, real-time prediction based of current trends and behaviors from all sources of data is the key
RESULTS:
Completing one-off data projects that aren’t reproducible is frustrating and inefficient.
SOLUTION: Automated, Scalable and Reproducible Data Initiatives
The best data teams in retail focus on putting a data project into production that is completely automated and scalable.
RESULTS:
While each organization is different, data challenges are the same. It takes a data production plan to guide any sized team to successfully producing a working predictive model that yields meaningful insights for the business.
The most successful retail companies worldwide solve these four issues by efficiently leverage all of the data at their fingertips by following set processes to see data projects through from start to finish. They also ensure those data projects are reproducible and scalable so the data team is constantly able to work on new projects vs. maintaining old ones. This is as easy as following the seven fundamental steps to completing a data project:
There is no doubt that data science, machine learning, and predictive analytics combined with Big Data will become an even more fundamental part of both online and traditional retail in the coming years. All retail organizations will use it, but only the successful ones will have an effective data production plan that yields the most effective insights into their business that gives them an edge over the competition.
Comments
Comments are moderated to ensure respect towards the author and to prevent spam or self-promotion. Your comment may be edited, rejected, or approved based on these criteria. By commenting, you accept these terms and take responsibility for your contributions.
Disclaimer
The views, opinions, data, and methodologies expressed above are those of the contributor(s) and do not necessarily reflect or represent the official policies, positions, or beliefs of Greenbook.
Sign Up for
Updates
Get content that matters, written by top insights industry experts, delivered right to your inbox.
67k+ subscribers