Categories
Insights Industry News
April 20, 2016
All analysts are not alike. So how do you spot a good one?
Dictionary.com defines analyst succinctly as “a person who analyzes or who is skilled in analysis.” For me, a good analyst is able to separate the signal from the noise, and also knows what kinds of signals to look for as well as where, when, how and why to look for them. It’s more than number-crunching, as one can have excellent math and computer programming skills and still be a lousy analyst. It does require critical thinking, which Dictionary.com defines as “disciplined thinking that is clear, rational, open-minded, and informed by evidence.” Without doubt, critical thinking is necessary in order to be a good analyst but particular skills and experience are also required.
Naturally, in marketing research knowledge of marketing is crucial and this, plus some background in the social and behavioral sciences, can distinguish a marketing scientist from a statistician. Perhaps it’s like the difference between a pitcher and a thrower in baseball. I feel analysts should also look outside of their own specialization to other fields for ideas and techniques not used in their own field. Software skills of many kinds, beyond those required of a typical businessperson, are also needed but, like mathematics, these are means and not ends. Interpersonal and communication skills are necessary for most positions these days and, increasingly, are even being asked of robots so, like critical thinking, they are necessary but not sufficient.
Experience
It’s hard to overrate the value of experience, especially in a field such as statistics. Formal university-level stats training lays the necessary foundation but there is a great deal of material and little time, so that foundation can be rather thin. Moreover, in these classes, the examples shown seldom bear much resemblance to real-world marketing research problems, which come in a wide assortment of sometimes odd flavors. The University of Hard Knocks is where the lasting lessons are taught.
Personality and outlook are also important
A good analyst should be a curious sort and have a hunger to understand what makes things tick. They need to move between the abstract and the concrete fluidly and make connections between the two that are understandable and pertinent to their clients. They must avoid oversimplifying while, at the same time, aim for simplicity. Tolerance for ambiguity, obviously, is helpful! Integrating various sorts of data and information into decisions – including expert opinion – is increasingly both feasible and obligatory for decision makers, and analysts should not be overly-focused on a single data source, data type or analytic method. Curiosity will come in handy here too.
What about imagination and creativity?
Both are indispensable, I feel. However, good analysts also need to be wary of falling into the trap of assuming that an exotic theory is necessarily a valid one. Simple answers, even if boring, are more likely to be true than elaborate ones. As Nicolaus Copernicus put it, “We thus follow Nature, who producing nothing in vain or superfluous often prefers to endow one cause with many effects.” They also avoid confusing the possible with the plausible and the plausible with fact.
Risk Tolerant
A good analyst must also be able to deal with complexity and uncertainty, however, and be able to think in terms of conditional probabilities: for example, if A and B happen, what are the probabilities of C and/or D happening? While it is true that we all must sometimes make quick go/no go decisions, analysts need to step back and figure out how the various pieces of the puzzle fit together and the implications for decision-makers. Being able to do these things is one of the reasons they’re hired in the first place!
Openminded
Similarly, they need to keep an open mind but avoid trying to be being different just to be different, which is another flavor of conformity anyhow. Analysts do need to be quite risk tolerant since they are often under pressure to try out a new idea quickly when more familiar approaches don’t work for the problem at hand. Yet, at the same time, good analysts must pay attention to detail and be able to endure the drudgerous tasks that still consume much of their time. Being a good analyst is like a tightrope walk…
Here are a few more thoughts on what I think makes a good analyst:
I’m writing as a marketing researcher mainly focused on quantitative research but feel many of these skills and the general mindset I’ve described also apply to qualitative marketing researchers as well as analysts in other disciplines. Not everyone will agree with everything I’ve written, of course, and what I’ve left out for space reasons or simply because it didn’t occur to me would fill many blogs, I’m sure! This has just been a quick snapshot of a complicated subject and I hope you have found it interesting and helpful.
[1] Though their framework is not universally accepted among scholars, Geert Hofstede and his colleagues present some useful perspectives on how businesspeople can deal with cross-cultural differences.
[2] If you have an interest in sampling and want to go beyond what is covered in introductory textbooks on marketing research and statistics, Sharon Lohr has written a book entitled Sampling: Design and Analysis that is detailed but not dreary.
[3] Experimental and Quasi-Experimental Designs (Shadish et al.) is one book I wish all marketing researchers would read or at least have on their shelf as a reference. If you’re very ambitious and mathematically-inclined, Judea Pearl’s writings may also be of interest. Pearl has challenged much of statisticians’ conventional wisdom regarding causal analysis.
Comments
Comments are moderated to ensure respect towards the author and to prevent spam or self-promotion. Your comment may be edited, rejected, or approved based on these criteria. By commenting, you accept these terms and take responsibility for your contributions.
Disclaimer
The views, opinions, data, and methodologies expressed above are those of the contributor(s) and do not necessarily reflect or represent the official policies, positions, or beliefs of Greenbook.
More from Kevin Gray
Discover the world of Artificial Intelligence and unravel the confusion of basic concepts. Explore distinctions between pattern detection and generati...
Marketing scientist Kevin Gray asks Dr. Anna Farzindar of the University of Southern California about the impact and ethics of Artificial Intelligence...
Some marketing data science directly competes with traditional marketing research areas and many marketing researchers may wonder what the future hold...
The importance of pursuing the discovery and understanding of data.
Sign Up for
Updates
Get content that matters, written by top insights industry experts, delivered right to your inbox.
67k+ subscribers